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$ Institute of Theoretical Physics, University of Uppsala, Uppsala, Sweden 

Received 31 May 1978, in final form 13 September 1978 

Abstract. Exact as well as approximate expressions for the Jost function of a radial barrier 
transmission problem are derived by the phase-integral method developed by Froman and 
Froman. The resulting formulae are used for calculating the positions and the widths of the 
quasi-stationary states. To demonstrate the essential features as simply as possible, an 
s-state in a potential, regular at the origin, is considered, and only the first-order phase- 
integral formulae are given explicitly, but the generalisation to I # 0 and arbitrary-order 
phase-integral approximations is indicated. 

1. Introduction 

As is well known, the analytic properties of the Jost function are associated with 
interesting features of the scattering of a quantal particle by a central field of force. 
Those complex zeros of the Jost function which lie close to the real k-axis are directly 
related to the sharp resonances due to the existence of quasi-stationary states. The real 
part of the zero determines the position of the resonance and the imaginary part 
determines its width. A sharp, narrow resonance corresponds to a small imaginary part 
of the zero. The imaginary part of the zero determines the probability of decay of the 
quasi-stationary state, so that a zero with a small imaginary part corresponds to a 
long-lived quasi-stationary state. The connection between the lifetime of the quasi- 
stationary state and the imaginary part of the corresponding complex zero of the Jost 
function was established by Krylov and Fock (1947). This connection was later 
rediscovered by many authors not aware of the existence of the paper by Krylov and 
Fock. The actual correct calculation of the complex zero is, however, a very difficult 
problem. Since the imaginary part cannot be calculated by means of ordinary pertur- 
bation theory it seems natural to apply the JWKB approximation, but the usual version of 
the JWKB method, namely the use of the well known connection formulae, gives no 
satisfactory possibility of evaluating the complex zeros. This circumstance, which is 
related to the one-directional nature of the connection formulae at the first and second 
turning points (cf figure l (a ) ) ,  will be clarified in the discussions below our formula 
(3.206) in 0 3 and at the end of Q 4. Furthermore, in the neighbourhood of and above 
the top of the barrier the usual connection formulae cannot be used. This difficulty was 
overcome, by the use of exactly soluble model barriers, by Connor (1968, 1973) and 
Crothers (1976), who derived parabolic connection formulae for tracing a JWKB 
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Figure 1. (a) This figure refers to the sub-barrier case. It shows the qualitative behaviour of 
V ( r )  and the contours of integration Tt and rK. The part of Tr which lies on the second 
Riemann sheet is indicated by a broken curve. The full curve between tl and f2 indicates a 
cut. The values of Q”’ given in the figure refer to the first Riemann sheet. 

( 6 )  This figure refers to the super-barrier case but is otherwise analogous to ( a ) .  The 
point where the cut along the Stokes’ line joining f l  and f t  crosses the real axis is called s. 

solution across the barrier, and by Dickinson (1970), who considered an inverted Morse 
potential and traced a JWKB solution from one side of the barrier to the other (cf also 
Miller 1968). However, the formula for the width of a resonance given by Connor 
(1968,1973) and Dickinson (1970) (cf. formula (5.14) in the present paper) is not valid 
near the top of the barrier. The general formula, valid also for that situation, is given in 
0 5 of the present paper. 

Although a rigorous phase-integral expression for the Jost function in the case of the 
three turning-point problem and real values of the energy E can be obtained directly 
from equations (33a, b ) ,  (43a) and (52b) in the treatment of barrier transmission by 
Froman and Froman (1970), we shall in the present paper not start from those 
formulae, and we shall only occasionally refer to the notations V I ,  01 and y1 used to 
express the results in the paper by Froman and Froman (1970). It is, however, 
worthwhile to point out how the Jost function is expressed in terms of those quantities. 
Therefore, we remark that for real values of the energy, the inverse of the Jost function, 
i.e. l / J ( k ) ,  is equal to exp(icpl)/& times a function which varies only slowly with 
energy, when the energy-dependent quantity y1 is appropriately chosen for the three 
turning-point problem actually considered, and a convenient modification of the 
phase-integral approximations is used, if necessary (cf Froman and Froman 1974a, 
1974b (pp 126-131)). It requires, however, a very careful study of the paper by Froman 
and Froman (1970) to realise this. To make the derivation and the results more easily 
accessible and directly adapted to scattering and decay problems, we shall therefore in 
the present paper derive the Jost function in a straightforward way for a particularly 
simple model and thereby restrict ourselves to the first-order approximation. 

According to the phase-integral method (Froman 1966,1970; Froman and Froman 
l965,1974a, 1974b (pp 126-131)) which will be used in the present paper, the general 
procedure is to derive first an exact expression for the quantity of interest, i.e. in the 
present case the Jost function, and then to omit certain small quantities, for which upper 
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bounds can be given (Froman and Froman 1965, 1970). In  the final formula any 
convenient order of the kind of phase-integral approximations used (Froman 1966, 
1970; Froman and Froman 1974a, 1974b (pp 126-131)) can be chosen. In the present 
paper we do not aim at generality but will rather strive to bring out the essential points 
of the general procedure as simply as possible. For this purpose we consider the s-state 
of a particle in a potential with the shape depicted in figures l (u )  and l(6).  Further- 
more, we consider only the first-order phase-integral approximation. Although this 
approximation is identical with the first order JWKB approximation, the method which 
we shall use for solving the connection problems (Froman and Froman 1965, 1970) 
makes it possible to derive results which cannot be obtained by means of the usual 
connection formulae for the first order JWKB approximation. 

In § 2 we review briefly the derivation of the Fock-Krylov theorem, emphasising 
certain points which are important for the justification of relations between analytic 
properties of the Jost function and physical effects in the decay process. In § 3 we derive 
an exact F-matrix expression for the Jost function. Using estimates of the F-matrix, we 
obtain in § 4 an approximate expression for the Jost function for real values of k. In 0 5 
we evaluate the positions and widths of the narrow resonances, and hence the complex 
zeros (with small negative imaginary parts) of the Jost function, and discuss the results 
thus obtained in relation to previous results. Previous authors have calculated the 
resonance width in the first order JWKB approximation (Connor 1968, equation (24); 
Connor 1973, equation ( 1 6 ~ ) ;  Dickinson 1970, equation (33)) and have obtained a 
formula which is, however, not valid for energies close to the top of the barrier. In the 
present treatment we arrive at the formula (5.13), which is valid also when the 
resonance lies close to the top of the barrier. In  the derivation of the first order formulae 
we aim only at a demonstration of an approach which is more rigorous than those used 
by previous authors, and which admits of the generalisation of the final results, if 
needed. The generalisation to 1 not necessarily equal to zero, as well as to arbitrary 
order phase-integral approximations, is indicated in 9 6. The main conclusions arrived 
at in the present paper are summarised in 3 7 .  

2. The Fock-Krylov theorem and the Jost function 

Let us consider a non-stationary state for a quantal particle which is initially, at the time 
t = 0, located inside a potential well surrounded by a barrier V(r) as shown in figure l ( a )  
or l(b).  In the present section our aim is to demonstrate the relation between the Jost 
function and the decay with time of the non-stationary state under consideration. For 
this demonstration it is sufficient to consider the simplest case when the wavefunction is 
spherically symmetric (i.e. an s-state) and when there exists no bound state. 

Let us denote by x(E,  r) the time-independent radial wavefunction which satisfies 
the Schrodinger equation 

with obvious notations, and the normalisation condition 

x*(E, r)x(E’,  r )  dr = S(E -E’). 
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For later use we note that E can be expressed in terms of k according to the well-known 
relation 

E = h 2 k 2 / ( 2 m ) .  (2.3) 

Assuming (as already mentioned) that there can be no bound state in the potential 
V(r), we can express the time-dependent radial wavefunction of our non-stationary 
state $(r ,  t )  in the form 

,-m 

9(r ,  t )  = C ( E ) x ( E ,  r) exp(-iEt/h) dE. (2.4) 
0 

At t = 0 the function $(r, t )  reduces to the wavefunction $(r, 0) of the initial state. For 
the coefficient C(E) we therefore obtain from (2.4) by means of (2.2) the formula 

From the normalisation condition 

loa k r ,  t)I2 dr = 1 

it follows, with the aid of (2.4) and (2.2), that 

Iom W(E)  d E  = 1, 

where W(E) is defined by 

W E )  = IC(E)12 (2.8) 

and gives the energy distribution of the non-stationary state described by the wave- 
function (2.4). The probability P ( t )  of finding, at the time t (>O) ,  the particle still in the 
initial state is 

(2.10) 

is the probability amplitude. Using (2.4), (2.2) and (2.8), we can write (2.10) as 
5 

p ( t )  = 1, W(E)  exp(-iEt/h) dE. (2.11) 

This relation was first proved by Krylov and Fock (1947). 
Let us now consider another time-independent continuum wavefunction 4 (E ,  r) 

which satisfies the same Schrodinger equation (2.1) as x ( E ,  r), but instead of fulfilling 
the normalisation condition (2.2), 4 (E ,  r) has by definition the following behaviour at 
r=O 

4 E  0 )  = 0 ,  4 ’ E  0) = 1, (2.12) 
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where the prime indicates differentiation with respect to r. Then, if the asymptotic form 
of 4 ( E ,  r)  as r + +CO is written 

4 ( E ,  r )  - (2ik)-'(J*(k) e ikr  - J ( k )  e-Ik'), r++co, (2.13) 

J ( k )  is by definition the Jost function. Since the integral in (2.2) is divergent for E = E' ,  
the main contribution to this integral comes from large values of r, and it  follows from 
(2.2), (2.3), (2.13) and the fact that x(E,  r)  differs from 4(E ,  r )  only by a constant factor, 
that 

(2.14) 

if the r-independent phase-factor in x(E, r)  is chosen conveniently. Inserting (2.14) 
into (2.5), we get 

and thus (cf (2.8)) 

(2.15) 

(2.16) 

The energy distribution W ( E )  is thus factorised. The most important factor, which 
determines the decay with time of the non-stationary state, is 1//J(k)I2.  It may depend 
strongly on the energy. The other factor is, apart from the factor 2mk/nh2, the square 
of the absolute value of the integral 5," 4*(E, r)$(r, 0) dr, which changes only slowly 
with energy but depends on the details of the initial wavefunction $(r, 0). This function 
is assumed to be negligible outside the barrier, so actually the integration goes 
essentially over a finite range of r. For a short-range potential the function 4(E ,  r) will 
be an analytic function of k, and the integral 5," 4*(E, r ) $ ( r ,  0) dr will also be an analytic 
function of k. 

According to (2.9), (2.1 1) and (2.16) the decay with time of the non-stationary state 
is governed by the Jost function. This is true even in complicated cases, where there are 
several close-lying pairs of zeros of the Jost function in the lower half of the complex k 
plane, as well as other possible singularities. In the simple case when one pair of zeros of 
the Jost function (in the lower half of the complex k plane and close to the real k axis) is 
well separated from all other pairs of zeros and singularities, it is possible to separate the 
contribution of this pair and to obtain a simple formula for the probability P ( t )  of 
finding the particle still in the initial state (cf below). 

Let us thus consider the simple case, just mentioned, when there is a pair of complex 
zeros of the Jost function close to the real k axis: 

k l = q - i a ,  k ,= -q - i a ,  (q > 0, (Y > 0, a/q << l), (2.17) 

while all other zeros and singularities of J ( k )  lie far away from the zeros (2.17) under 
consideration. Assuming k to lie close to one of the zeros (2.17), and writingJ(k) in the 
form 

J(k) =Jo(k)(k - q  + i a ) ( k + q  +icr) =J0(k)(2m/h2)(E-E, +$ir) ,  (2.18) 

where Jo(k) is a certain function of k (which is almost constant in the small region of 
k-values under consideration), E is related to k according to (2.3), n is the quantum 
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number associated with the resonance in question, and E,, and r are defined by 

h2 2 2 E,,=-(q +a 1 
2m 

we can write (2.16) as follows 

D ( E )  W ( E )  = 
( E  - E,, + $r2 ’ 

(2.19) 

(2.20) 

(2.21) 

where in D ( E )  we absorb everything except the denominator. If r is small compared to 
the energy level spacing, the factor [(E - E,)’ +$r2]-1 in (2.21) changes very rapidly 
when E passes through E,,, and we can replace D ( E )  in (2.21) by a constant which, 
because of (2.7), is equal to r/27r. Inserting the resulting expression for W ( E )  into 
(2.1 l ) ,  we obtain approximately 

p(t) = e x p [ - i ( ~ ,  -~ir>t/h]=exp[-i(~, ,t /h)-rt/2h] (2.22) 

and hence (cf (2.9)) 

P ( t )  = exp(-rt/h). (2.23) 

3. Exact expression for the Jost function in terms of the F matrix 

In this section we shall let $(r) denote a conveniently normalised solution of the 
time-independent radial Schrodinger equation, which, for convenience, is now written 
as follows 

Q+ Q2(r)$ = 0, 
dr2  

where, for a particle in an s state (I = 0 )  of a potential V(r), we have 

2m Q2(r) = k2 -- V(r) 
hZ 

(3.1) 

with obvious notations. We assume that V(r) is regular at the origin, tends to zero faster 
than r-’ as r +  +CO, and otherwise has the shape depicted in figure l (a )  or l(b).  We 
recall that k is related to the energy E according to the well-known relation (2.3). 

We define a row vector 

f ( r )  = (fib), f2(r)), (3.3) 
where 

fl(r)  = Q-’”(r) exp(iw(r)) 

f2(r) = Q-’”(r) exp(-iw(r)) 

(3.4a) 

(3.46) 

with 
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and we introduce a column vector 

(3.6) 

where u l ( r )  and uz(r)  are uniquely determined in terms of $ ( r )  and $ ’ ( r )  by the 
requirements 

$ ( r )  = f(r)a(r) (3.7a) 

$’(r )  = f (r)a(r) ,  (3.7b) 

where the prime denotes differentiation with respect to r. Given a solution $(ro)  = 
f ( ro)a(ro)  at a point ro, the same solution at an arbitrary point r is, according to Froman 
and Froman (1965), given by (3.7a,b) with 

(3.8) a ( r )  = F(r, ro)a ( ro) ,  

where F(r,  ro) is a matrix, the elements of which can be expressed as convergent series, 
admitting of useful estimates of the elements of F(r,  ro) .  

We consider only unbound states, i.e. the energy of the particle is assumed to be 
positive but may lie either below or above the top of the barrier. A unified treatment of 
the cases of sub-barrier and super-barrier transmission is thus given. We assume that 
the complex r plane has been cut such that fl(r) andf2(r), defined by (3.4u, b) ,  are single 
valued. To make possible the use of results already obtained by Froman and Froman 
(1970), we choose the phase of O”*(r) as indicated in figure l (a ) ,  (b) .  With this choice, 
when r + +a, fl(r)  represents an incoming wave, and f2(r) represents an outgoing wave. 

Consider now a solution +(k, r )  of (3.1) which is defined by the asymptotic 
behaviour 

+(k, r )  - eikr, r + + a .  (3.9) 

The Wronskian of this function $(k, r )  and the function 4 ( E ,  r )  introduced in 0 2 is 
+4’-4& = J ( k )  according to (2.13) and (3.9). Since this Wronskian is independent of 
r, it can also be evaluated at r = 0, and in this way one finds that $4‘- q5$’ = $(k, 0) 
according to (2.12). Comparing the two expressions for the Wronskian, we find that 

$(k, 0 )  = J ( k ) .  (3.10) 

This result will be used presently. 
To represent by (3 .74  b) the solution fulfilling (3.9), we put (cf (3 .44  b ) )  

u1(+a)  = 0 ( 3 . 1 1 ~ )  
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With due regard to (3.4a, b ) ,  (3.11b) and (3.10) we can write (3.13) as follows 
112 

J ( k )  = (%) exp[i r - t m  lim (kr + w(r))] 

x [F12(0, +m) exp(iw(0)) + F22(0, +a) exp(-iw(O))]. (3.14) 

So far k has not been restricted to real values, and the constant lower limit in the integral 
(3.5) defining w(r) has not been specified. To be able to utilise directly the results 
obtained by Froman and Froman (1970) in their analysis of the barrier transmission 
problem, we shall from now on assume k to be real, and as the above-mentioned lower 
limit of integration we shall choose, in the sub-barrier case the classical turning point tl 
(cf figure l(a)), and in the super-barrier case the point s - 0, where s is the point where 
the cut along the Stokes’ line between the two complex conjugate transition points t l  
and tz crosses the real axis (cf figure l(b)).  With this choice formula (3.14) can be 
written 

J ( k )  = (-)’’’ exp(K + i  r-+m lim (kr- lwZ(r)l))(FIZ(O, $00) exp(-iL) 
Q(0) 

+ Fz2(0, +CO) exp(+il))  (3.15) 

with the notations K ,  L and wz(r) defined as follows. The quantity K,  which is positive 
in the sub-barrier case and negative in the super-barrier case, is given by 

r r f, 

i Q(r)  dr, sub-barrier case, 

i jS-, Q(r) dr, 
s i -0  

super-barrier case, 

(3.16) 

( 3 . 1 6 ~ )  

(3.166) 

where the contours Tr< pertinent to the two cases under consideration are depicted in 
figure l(a), (6). The integration from tl  to t 2  shall be performed along the upper edge of 
the cut between t l  and t 2  in the sub-barrier case and along the left-hand edge of the cut 
between t l  and t2  in the super-barrier case. The integration from s - 0 to s + 0 shall be 
performed along a path encircling r z .  The quantities L and wz(r) are defined as (cf figure 
l ( a ) ,  ( b ) ) :  

(3.17) 

( 3 . 1 7 ~ )  

and 

I] Q(r) dr, super-barrier case, (3.176) 
0 

I s Q(r) dr sub-barrier case, 

[ j  Q(r )dr  super -barrier case. 
I 1 0  

( 3 . 1 8 ~ )  

(3.186) 
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Writing, for the sake of simplicity, F12 and F22 instead of F12(0, +CO) and F22(0, +CO), 

respectively, separating these quantities into amplitude and phase, and noting that 
Q”’(0) = /Q1’2(0)/ while Q’”(+co) = -ilQ’/2(+Co)i (cf figure l ( u ) ,  (b ) ) ,  we can write 
(3.15) as follows 

1 /2  
J ( k )  = IGI exp(K +iO)(lFlzl exp(-i@) - IF22i exp(+i@)) (3.19) 

where 

0 = lim ( k r -  lw2(r)l) - 377/4+$ arg FZ2 +$(arg F12-$77) ( 3 . 2 0 ~ )  
,++m 

and 

@ = L +t  arg FZZ -t(arg F I Z  -$=I  - 377/4. (3.206) 

The quantity 5 arg FZ2 -$(arg FI2  - &r) appearing in the right-hand member of 
(3.20b) is the quantity which Froman and Froman (1970) denoted by yi0). Well below 
the top of the barrier this quantity is very small, but it is still dangerous to neglect it close 
to a sharp resonance, since, due to the largeness of the factor exp{K} in (3.19), this 
negligence will in general imply that the resulting formula for J ( k )  will lead to a 
displacement of the resonance from its actual position by a very large number of 
half-widths. This has been shown by Froman and Froman (1970) and clearly illustrated 
for an exactly soluble model by Lundborg (1977). However, it is in general not 
necessary to know the numerical value of the small quantity $ arg FZ2 - $(arg F l z  - t.rr) 
but only to be aware of the existence of this small correction quantity which is only 
slightly energy-dependent. The appearance of the quantity arg F 2 2  - $(arg FI2 - $77) in 
the expression (3.20b) for @ is, for energies well below the top of the barrier, closely 
related to the one-directional nature of the connection formulae at the first and second 
turning points. This one-directedness thus reflects itself, in the present context, as the 
above-mentioned displacement of the sharp resonance. 

Formula (3.19) can be written as follows 

This formula can then be written 

J ( k )  = / J ( k ) /  exp(-iS) (3.22) 

where 

A being a positive quantity (cf (3.26)) defined by 

(3.23) 

(3.24) 

and 

(3.25) 
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tan-’ lying in the same quadrant as 0. Since k is real, the quantities IFl2/ and 
which appear in the above formulae, are related to each other according to the relation 
(23) in the analysis of barrier transmission by Froman and Froman (1970), i.e. 

(Fl2I2 = /F22/2+exp(-2K). (3.26) 

4. Approximate expressions for the Jost function on the real k-axis 

As in the last part of 0 3 we shall in the present section restrict ourselves to real values of 
k, since the results obtained by Froman and Froman (1970), parts of which we shall now 
use, are restricted to real values of the energy. According to the estimates (43a, b ) ,  
(526) and (536) in that paper we have, after omission of small correction terms, 

(4.1) 

(4.2) 

(4.3) 

exp(-2K) 
1 +(1+exp(-2K))l12 lF121-lF221=(1+exp(-2K))‘’2-1 = (4.4) 

$ arg FZ2 f $(arg F12 - f t r )  = *a (4.5) 

where, by definition, 

According to equations (10) and ( loa)  in Froman et a1 (1972) (see also references 
therein) U is for the first-order phase-integral approximation given by the formula 

(4.7) 

where r is the gamma function. This formula has been obtained by means of a 
comparison equation method for connecting the first-order JWKB solutions on opposite 
sides of the top of a barrier which has approximately parabolic shape, when the energy is 
close to that of the top of the barrier. For such energies the ‘parabolic’ connection 
formulae thus obtained can be used in both directions. 

Inserting (4 .9 ,  with the upper signs, into (3.20a), we obtain 

0 = lim (kr - 1 w2(r ) ( )  - 3 ~ / 4  + (T, (4.8) 
r++m 

where (T is given by the approximate formula (4.7). Inserting (4.3) into (3.24), we get 

A z ( 1  + e ~ p ( - - 2 K ) ) * ” ~ - ( l  +exp(-2K))-’14, (4.9) 

and by means of (3.24) and (4.4) we obtain the following approximate formula for 
another quantity appearing in (3.23): 

(4.10) 
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Inserting (4.1), (4.2) and (4.8) into (3.19), we obtain 

x ([exp ( 2 ~ )  + 11"~ exp(-iCP) - exp ( K )  exp(+iCP)). (4.11) 

This approximate formula can also be written in the alternative form (3.22) with the 
following expressions for lJ(k)l and S, which are readily obtained from (3.23), (3.25), 
(4.3), (4.8), (4.9) and (4.10), 

(4.12) 

- lim ( k r - / w 2 ( r ) j ) + 3 ~ / 4 - ~ ~ .  (4.13) 

We recall that several of the formulae used for obtaining (4.12) and (4.13) were derived 
on the assumption that k is real. We also emphasise that close to a sharp resonance the 
quantity f arg FZ2 -f(arg F 1 2  -&) in the expression (3.20b) for CP can in general not be 
neglected or replaced by the approximate expression obtained from (4 .9 ,  with the 
lower signs, and (4.7), for if this is done, and if the resulting approximate expression for 
CP is used in the expression for the Jost function, the position of a sharp resonance is in 
general shifted from its correct position by a very large number of half-widths. The 
reason for this fact, which, as has already been mentioned, is closely related to the 
one-directional nature of the connection formulae at the first and second turning points, 
when the energy lies well below the top of the barrier, is that at the resonance there is a 
cancellation of two large terms in the expression (3.19) or (4.11) for the Jost function. 

r++m 

5. The positions and widths of the quasi-stationary states 

From (3.23) we obtain 

where 

1 
= A2/4 + sin2 (0 

(5.2) 

is the factor on the right-hand side of (5.1) that accounts for the resonance effect, while 
the other factors there vary slowly over the energy interval in which the resonance 
occurs. From (4.9) it follows that A increases as K decreases, i.e. as E increases, and 
that A = 2114 - 2-114 -0.35 - at the top of the barrier. Due to the smallness of A when 
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K b 0 the quantity 6, which is the most important factor in (5.1), has fairly sharp peaks 
when @ changes, while A is kept constant. The maxima of 6 occur when 

(5.3) @=nr, n = 0 , 1 , 2 , .  . . . 
The positions E, of the quasi-stationary states are obtained from this condition. 

The half-width, r, of a peak on the energy scale can be obtained as follows. 
Neglecting the energy dependence, over the width of the resonance, of A as well as of all 
factors except 6 on the right-hand side of (5.1), we realise with the aid of (5.2) that the 
half-width on the @-scale is A@ = 2 sin-'(A/2). For K b 0 the quantity A is so small 
(60.35) that sin(A/2) can approximately be replaced by 1212, and hence we get A@ = A. 
To convert this half-width on the @-scale to the energy scale we divide by (d@/dE)E=E,, 
obtaining 

This formula increases in accuracy the narrower the resonance is, but is also approxi- 
mately valid close to the top of the barrier, where the resonances are comparatively 
broad. 

Provided the peak is not too broad, one can easily derive a simple, well known 
formula for its shape. To do this we assume E to be close to E, and note that then (cf 
(5.3)) 

sin @ = (-1)" sin(@- nn) = (-I),(@ - n ~ )  = (-1)"(d@/dE)E=En(E -E,) ( 5 . 5 )  

to the first order in E -E,. Assuming this approximate formula to be valid over the 
whole width of the peak, and inserting it into (5.2), we get for the line shape the 
Lorentzian expression 

where r is given by (5.4). 
From (3.206) and (4.5), with the lower signs, it follows that 

T 
(d@/dE)EsEn =-- (dU/dE)E=E, 

2h 

where T is defined by 

(5 .6)  

(5.7) 

T = 2 h ( d L / d E ) ~ = ~ , .  (5 .8)  

We emphasise that the last term on the right-hand side of (5.7) is very important when 
the energy is close to that of the top of the barrier but is otherwise negligible. Using 
(3.17), (3.2) and (2.3), we can write (5.8) as follows 

(5 .8 ' )  

In the case of sub-barrier penetration T is the classical period of a complete oscillation 
of the particle back and forth between the origin and the classical rning point t l .  To 
evaluate du/dE, appearing in (5.7), we write d u l d E  = (da/dK)(dK/dE) when the 
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first-order phase-integral approximation is used. For dK/dE we obtain, with the aid of 
(3.16), (3.2) and (2.3), the first-order formula 

d K  , m dr 

For du/dK we obtain from (4.7) the following first-order formula: 

d u  1 d arg r(& + iK /a )  
d K  2 a  d (K/a )  
_- --(lnlK/al- 

(5.9) 

1 
2 a  

=-[lnlK/al-Re $( i+ iK/a) ]  (5.10) 

where (cf Abramowitz and Stegun 1965, 6.1.27) 

d lnT(z)  - Y(z)  
dz T(z) 

-- * ( Z )  = (5.11) 

For IKI< a / 2  we can expand $ ( i+ iK/a )  in a Taylor series around K = 0. Taking the 
real part of the resulting series, we obtain (cf Abramowitz and Stegun 1965, 6.3.3 and 
6.4.4) 

1 e.2 (-1)” 1 K ” 
2 v = l  (2Y)! 

Re I ) ( f+ iK/a)  = I)(-) + 1 -I)(2u1(~)(--) 

(5.12) 

where y is Euler’s constant and 5 is Riemann’s zeta function. The first few terms in this 
series are (cf Abramowitz and Stegun 1965, 6.3.3 and Table 23.3) 

Re I ) ( t+ iK/a)  = -1.9635+2.1036 (2K/a)’.-2.0090 ( ~ K / T ) ~ + .  . . . 

Inserting (4.9) and (5.7) into (5.4), we get 

(5.1 2’) 

2h[ (1 + exp( - 2 K p 4  - ( 1 + exp( -2K))-”4] r -  (5.13) 

For K, T and du /dE  = (du/dK)(dK/dE) we have the formulae (3.16), (5 .8’) ,  (5.10) 
with (5.12’), and (5.9). 

The formula for the half-width derived by Connor (1968, equation (24); 1973, 
equation (16a)), on the assumption of a parabolic barrier, and by Dickinson (1970, 
equation (3311, on the assumption of an inverted Morse potential, reads in our notation 

l T - 2 h ( d ~ / d E ) ~ = € , I  

h ln(1 +exp(-2K)) 
T 

r =  (5.14) 

This formula can, however, be used only well below the top of the barrier (cf Connor 
1976, pp 135-136), where it agrees approximately with our formula (5.13). In this case 
exp(-2K)<< 1, and (5.13) as well as (5.14) simplify into 

T - h  exp(-2K)/T. (5.15) 

For energies close to the top of the barrier the numerators in (5.13) and (5.14) still have 
approximately the same numerical values (since 2 (z?’’~ - T’’~)  = 0.697 and In 2 = 
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0.693), whereas the denominators differ considerably. As the energy approaches the 
top of the barrier, the denominator in (5.14), which is the classical oscillation time T, 
tends to infinity, while the denominator in the correct formula (5.13) remains finite. 
From (5.14) one would therefore draw the erroneous conclusion that a resonance at the 
top of the barrier would have the width r = 0, i.e. that it would be infinitely sharp. 

Recalling (3 .20b) ,  we can write the resonance condition (5.3) as follows 

n = 0 ,  1 , 2 , .  . . .  (5.16) 1 3 L+$ arg F22-$(argFlz-z.rr) = (n +&r, 

Inserting (4.5), with the lower signs, into (5.16), we obtain 

L-u=(n+i).rr, n =o, 1 , 2 , .  . . . (5.17) 

As concerns the location of the quasi-stationary levels obtained from (5.17), we should 
note that, since we use the first-order JWKB approximation, the positions of the levels 
will in general be displaced by many half-widths r. Only by using higher-order 
phase-integral approximations can one expect to get the position of a level with an 
accuracy of the order of r or better. (See Froman and Froman 1970 pp 620-621.) 

Considering a narrow resonance, we shall finally express our results in terms of zeros 
of the Jost function. The value of the resonance energy E, is approximately obtained 
from the resonance condition (5.17), where r will be neglected since the resonance is 
assumed to be narrow, i.e. from the condition 

L = (n  +t)rr, n = 0 , 1 , 2  , . . . .  (5.18) 

We emphasise that the error in the value E, thus obtained is in general very large 
compared to r, although small compared to the spacing of the energy levels. Since the 
resonance is assumed to be narrow, exp(-2K) is small compared to unity, and 
2 h d a l d E  can be put equal to zero in the denominator of formula (5.13), which 
therefore simplifies into (5.15). Solving (2.19) and (2.20) with respect to 7) and a, we 
obtain 

and 

Because of what is said immediately below formula (5.18) about the inaccuracy of E,, as 
obtained from (5.18), the corresponding error in the value of q, obtained from (5.19), is 
in general very large compared with a,  although small compared to 7). By increasing the 
order of the phase-integral approximations one may diminish the error in q, so that it 
may become as small as r or perhaps even smaller. The capability and the restriction of 
the phase-integral method as regards the determination of the pair of well separated 
zeros (2.17) of the Jost function associated with the resonance under consideration is 
thus demonstrated. 

6. Generalisation 

We shall now indicate how the results presented in the previous sections can be 
generalised to the case that the physical potential V ( r )  is either regular or has a 
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Coulomb singularity at the origin and that the angular momentum quantum number l 
may be different from zero. In the radial Schrodinger equation (3.1) the function Q 2 ( r )  
is then given by 

2 2m 1(1+ 1) 
Q 2 ( r )  = k -7 V ( r )  -- h r2  ' 

Defining 

we introduce modified phase-integral approximations of arbitrary order according to 
Froman and Froman (1974a, 1974b (pp 126-131)). The reason for this is that we want 
the phase-integral approximations to be valid also at the origin. With the expression 
(6.2) for Qkod(r) there are two generalised classical turning points associated with the 
potential well in the case of sub-barrier penetration. As the energy increases and the 
super-barrier case is reached, the left generalised classical turning point remains, but 
the right one goes over into one of the two generalised transition points associated with 
the underdense barrier. The analysis of the barrier transmission problem made by 
Froman and Froman (1970) can then be taken over directly. In fact, except for a factor 
which changes smoothly with energy, the inverse of the complex conjugate of the Jost 
function, i.e. l / J*(k) ,  is given by the inverse of the expression 0 1  exp(icpl), obtained by 
Froman and Froman (1970, equation (31)), for real values of k. In this expression we 
define K by the first equality in our formula (3.16) but with Q ( r )  replaced by q ( r ) ,  we 
note that (cf Froman and Froman 1970, equations (28) and (57)) 

(6.3) 1 1 -(a - $ arg FZ2) = t arg FZ2 - T(arg FI2 - zrr)  = y!'), 

and we put 

(6.4) 

where L is defined by the first equality in our formula (3.17) but with Q ( r )  replaced by 
q ( r )  and T r  replaced by a closed loop around the two generalised classical turning points 
associated with the potential well (in the sub-barrier case) or around the generalised 
classical turning point and one of the generalised transition points associated with the 
barrier (in the super-barrier case). The quantities R, and cpl are given by the explicit 
formulae (334  b )  and (56~2, b )  in the analysis by Froman and Froman (1970). If we 
replace our definition (3.206) by (cf (6.3) and (6.4)) 

(6.5) 

our formula (5.2) for the essential factor in 1/ lJ(k)I2  remains valid, A being still given by 
(4.9); cf formula (60) in the paper by Froman and Froman (1970). With the expression 
(6.5) for @ our formula (5.3) for the positions of the resonances also remains valid. 
Consequently (5.17) and (5.18) remain valid, if ( n  + Z ) T  is replaced by ( n  +;)T. Also 
(5.13) remains valid, if T is defined by (5.8) but with the definition of L changed as 
described above. For calculating dL/dE in (5.8) one then uses formulae (23) or (26) in a 
paper by Froman (1974), the use of the former formula being necessary if the energy is 
close to the top of the barrier. For calculating da /dE  in (5.13), when higher-order 
phase-integral approximations are used, one uses formulae (10) and (loa, b, c)  given by 
Froman er a1 (1972). 

1 
y1= 511 - L, 

1 @ = y?) - y 1  = L + i arg FZ2 - t(arg F12 - TT) - in-, 
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7. Conclusions 

We have considered in detail the quantal decay of an s state of a particle in a potential 
with the shapes shown in figures l ( a )  and l(b).  With the aid of the Fock-Krylov 
theorem we demonstrated in 9 2 how the decay with time of this non-stationary state 
can be expressed in terms of the Jost function. Using, in the F matrix phase-integral 
method developed by Froman and Froman (1965), the first order JWKB functions 
defined by (3.4a, b )  with (3 .9 ,  we derived in 9 3 for the Jost function J ( k )  the exact 
expression given by equations (3.22)-(3.25) and (3.20a, b) ,  which is valid when k is 
real, whether the energy E lies below or above the top of the barrier. Omitting, in this 
expression, small correction terms, we obtained in 9 4 the approximate formulae (4.12) 
and (4.13) with (4.7) for the quantities lJ(k)l and 6 in (3 .22) .  For the widths and 
positions of the quasi-stationary states we obtained in 9 5 the approximate formulae 
(5.13) and (5.17), and we emphasised that for a narrow resonance (when the energy lies 
well below the top of the barrier) the error in the energy level position E, obtained from 
(5.17) is in general very large compared with the energy level width r, although small 
compared to the spacing of the energy levels. The generalisation to the case that the 
physical potential V ( r )  is either regular or has a Coulomb singularity at the origin and 
that the angular momentum quantum number 1 may be different from zero was 
indicated in 0 6. 
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